

SCHOOL OF ARCHITECTURE, BUILDING & DESIGN

Research Unit for Modern Architecture Studies in Southeast Asia

Bachelor of Science (Honours) (Architecture)

Building Structures (ARC 2522) Project 2: Extension of a R.C. bungalow

> Name: Ibrahim Adhnan ID: 0314694 Tutor: Pn. Norita

EXTENSION PROPOSAL

Roof Plan

LOAD DISTRIBUTION DIAGRAM

QUANTIFY DEAD LOADS ACTING ON STRUCTURE

GROUND FLOOR

Gaming Room : Slab thickness = 150mm Slab self weight = $0.15m \times 24kN/m^3$ $= 3.6 \text{kN} / m^3$

Gym:

Slab thickness = 150mm Slab self weight = $0.15 \text{m} \times 24 \text{kN}/m^3$ $= 3.6 \text{kN} / m^3$

Corridor:

Slab thickness = 150mm Slab self weight = $0.15 \text{m} \times 24 \text{kN}/m^3$ $= 3.6 \text{kN} / m^3$

Brick Wall:

= Wall Height x Thickness x Density $= 3.6 \text{m} \times 0.15 \text{m} \times 19 \text{kN}/m^3$ = 10.26kN/m

 $= 3.6 \text{kN} / m^3$ Brick Wall: = Wall Height x Thickness x Density $= 3.3 \text{m} \times 0.15 \text{m} \times 19 \text{kN}/m^3$

= 9.41kN/m

Beam Self Weight:	Roof Slab:
(Assume all beams are 150mm x 300mm)	Slab Thickness = 150mm
= Beam Size x Concrete Density	Self Weight = $0.15 \text{m} \times 24 \text{kN}/m^3$
= 0.15m x 0.3m x 24kN/ m ³	$= 3.6$ kN/ m^3
= 1.08kN/ m ³	

f Slab: Thickness = 150mm

 $= 2.4 \text{kN} / m^3$ Office:

Slab self weight = $0.15 \text{m x } 24 \text{kN}/m^{3}$

Slab thickness = 150mm

Toilet: Slab thickness = 100mm Slab self weight = $0.1 \text{m} \times 24 \text{kN}/m^3$

Slab self weight = $0.15m \times 24kN/m^3$

 $= 3.6 \text{kN} / m^3$

1ST FLOOR

Slab thickness = 150mm

Library:

QUANTIFY LIVE LOADS ACTING ON STRUCTURE

GROUND FLOOR	1 st Floor
Gaming Room :	Library:
= 2kN/m ³	= 2.5kN/m ³
Gym:	Toilet:
= 4kN/m ³	= 2kN/m ³
Corridor:	Office:
= 4kN/m ³	= 2kN/m ³
	Roof Slab:

 $= 0.5 kN/m^{3}$

IDENTIFY ONE WAY OR TWO WAY SLAB Indicating the Distribution of Load from Slab to Beam

 L_y = Longer side of slab L_x = Shorter side of slab When $L_y/L_x > 2$, it is a one way slab When $L_y/L_x < or = 2$, it is a two way slab

GROUND FLOOR

Gaming Room: = 4 m ÷ 3.58 m = 1.1 < 2 (Two way slab)

Gym:

= 4.58 m ÷ 3 m = 1.53 < 2 (Two way slab)

Corridor:

= 4 m ÷ 1 m = 4 > 2 (One way slab)

FIRST FLOOR

Library: = 4.58 m ÷ 4 m = 1.14 < 2 (Two way slab)

Office:

= 4.58 ÷ 3 m = 1.53 < 2 (Two way slab)

Toilet:

= 2 m ÷ 2 m = 2 = 2 (Two way slab)

LOAD DISTRIBUTION DIAGRAM

Indicating the distribution of load from slab by using the tributary area method

Roof Plan

